Elliptic functions

Results: 192



#Item
121Q-analogs / Modular forms / Elliptic functions / Mathematical identities / Enumerative combinatorics / Theta function / Mathematics / Combinatorics / Mathematical analysis

(August 23, [removed]The Jacobi product formula c Paul Garrett, [removed], 2001 Theorem: (Jacobi Product Formula) Let w, q be indeterminates. Then in the formal power series ring

Add to Reading List

Source URL: www.math.umn.edu

Language: English - Date: 2001-08-23 18:35:57
122Elliptic functions / Analytic number theory / Modular forms / Lie groups / Elliptic curve / Group theory / Complex multiplication / J-invariant / Jacobi elliptic functions / Abstract algebra / Mathematical analysis / Mathematics

147 The Main Theorem of Complex Multiplication 1 Dipendra Prasad

Add to Reading List

Source URL: www.math.tifr.res.in

Language: English - Date: 2007-03-29 11:03:49
123Linear algebra / Trigonometry / Analytic functions / Inequalities / Mathematical analysis / Trigonometric functions / Cauchy–Schwarz inequality / Triangle inequality / Dimensional analysis / Mathematics / Algebra / Geometry

Inequalities for the perimeter of an ellipse G.J.O. Jameson, Math. Gazette[removed]The perimeter of the ellipse x2 /a2 + y 2 /b2 = 1 is 4J(a, b), where J(a, b) is the “elliptic integral” π/2

Add to Reading List

Source URL: www.maths.lancs.ac.uk

Language: English - Date: 2014-03-31 07:11:23
124Prolate spheroidal coordinates / Oblate spheroidal coordinates / Toroidal coordinates / Symbol / Elliptic cylindrical coordinates / Hyperbolic function / Parabolic coordinates / Spherical coordinate system / 3-sphere / Coordinate systems / Geometry / Mathematics

352 BIBLIOGRAPHY • Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, 10th ed, New York:Dover, 1972. • Akivis, M.A., Goldberg, V.V., An Introduction to Linear Algebra and Tensors, New York:Dover, 19

Add to Reading List

Source URL: www.math.odu.edu

Language: English - Date: 2000-12-13 11:55:22
125Analytic number theory / Spectral theory / Representation theory of Lie groups / Lie algebras / Symbol / Weight / Modular form / Elliptic curve / Eigenvalues and eigenvectors / Algebra / Mathematics / Abstract algebra

A FINITE FIELD HYPERGEOMETRIC FUNCTION ASSOCIATED TO EIGENVALUES OF A SIEGEL EIGENFORM DERMOT McCARTHY AND MATTHEW A. PAPANIKOLAS Abstract. Although links between values of finite field hypergeometric functions and eigen

Add to Reading List

Source URL: www.math.tamu.edu

Language: English - Date: 2012-05-04 12:30:20
126Analytic number theory / Algebraic curves / Polynomials / Group theory / Elliptic functions / Classical modular curve / J-invariant / Elliptic curve / Modular form / Abstract algebra / Mathematics / Algebra

On the Computation of Modular Polynomials for Elliptic Curves Ian F. Blake1 , J´ anos A. Csirik1 , Michael Rubinstein2? , and Gadiel Seroussi1 1

Add to Reading List

Source URL: www.csirik.net

Language: English - Date: 2014-01-19 15:08:47
127Analytic number theory / Arithmetic function / Elliptic functions / Randomized algorithm / Expectation–maximization algorithm / Euclidean algorithm / Mathematical analysis / Mathematics / Modular forms

COMPUTING THE RAMANUJAN TAU FUNCTION DENIS XAVIER CHARLES We show that the Ramanujan Tau function τ(n) can be computed by a randomized algorithm 1 that runs in time O(n 2 + ) for every  > 0 under GRH. The same method

Add to Reading List

Source URL: pages.cs.wisc.edu

Language: English - Date: 2009-07-16 15:38:35
128Angle / Equations / Euclidean plane geometry / Pythagorean theorem / Triangles / Pythagorean triple / Complex number / Spectral theory of ordinary differential equations / Envelope / Geometry / Mathematics / Mathematical analysis

ELLIPTIC FUNCTIONS AND ELLIPTIC CURVES (A Classical Introduction) Jan Nekov´ aˇ r

Add to Reading List

Source URL: www.math.jussieu.fr

Language: English - Date: 2004-09-20 07:25:40
129Symbol / Modular forms / Elliptic functions

Quantum Monte Carlo method in details. I. CONTINUOUS AND DISCRETE HUBBARD-STRATONOVICH TRANSFORMATIONS The HS transformation is based on identity : 1 exp{ A2 } = (2π)−1/2

Add to Reading List

Source URL: www.physics.rutgers.edu

Language: English - Date: 2001-04-16 13:41:53
UPDATE